05/06/16

Gli infiniti di Cantor:Parte nona. La continuità dei numeri reali

Cercare di analizzare la cardinalità di R senza prima parlare della continuità che lo caratterizza è assurdo; le dimostrazioni infatti si appoggiano appunto sulla continuità dei numeri reali. E' per questo che l'ordine di infinito di R è diverso (come vedremo) da quello degli insiemi numerabili: a causa della continuità. Lo stesso Cantor per primo, fece una costruzione dei numeri reali per raggiungere lo scopo, noi considereremo però la costruzione di Dedekind.