10/11/20

COSA, COME E QUANDO SI OSSERVA NELL'UNIVERSO (2)

Riproponiamo, diviso in sei puntate, un articolo che deve rappresentare l'ABC per chi volge lo sguardo al cielo: una semplice spiegazione di come funziona quella stupefacente macchina del tempo che l'Universo mette a disposizione di chiunque abbia occhi e testa (e un pizzico di buona volontà!) per comprenderla ed ammirarla. Questa seconda puntata è dedicata all'approfondimento del tema trattato nella prima.

QUI le altre puntate  -  QUI l'articolo intero (pubblicato il 10/1/2018)

 

Siamo "fortunati" o "sfortunati" nel vedere il Cosmo?

(Per i più grandi)

Poniamoci una domanda: “Siamo particolarmente fortunati ad essere stati raggiunti dalla RCF (Radiazione Cosmica di Fondo) in un momento della nostra evoluzione in cui abbiamo le capacità tecniche di rilevarla? Rispondiamo ai più “grandi” tenendo conto dell’espansione dell’Universo e parlando in modo abbastanza serioso (anche se semplice).

In realtà, la domanda appare più che giustificata quando si pensa che la radiazione cosmica di fondo ha agito 380000 anni dopo il Big Bang e non è certo durata per miliardi di anni, ma solo per un intervallo abbastanza modesto di tempo. Si potrebbe allora dire: “Se è avvenuta in un certo momento della storia dell’Universo, e ciò che vediamo oggi è la luce che ha emesso in quel momento, allora vuol proprio dire che ci siamo trovati nel posto giustoal momento giusto e con la tecnologia giusta. Qualche milione di anni fa la luce non sarebbe ancora arrivata e tra qualche milioni di anni la luce ci avrebbe già superato”.

Il discorso sembrerebbe non fare una grinza e - oltretutto- è avvalorato da molti casi ben conosciuti.

Prendiamo, ad esempio, l’esplosione della stella che ha dato luogo alla  nebulosa del Granchio. Fu osservata a occhio nudo dai cinesi nel 1054 d.C., proprio nel momento in cui esplose come supernova. Accidenti, potremmo dire, se fosse avvenuta qualche secolo dopo l’avremmo potuta osservare con lo Space Telescope e chissà quante cose avremmo imparato. Invece, purtroppo, OGGI ci dobbiamo accontentare della nebulosa che ha creato e della stella di neutroni al suo centro. Abbiamo perso l’attimo fuggente. Che sfortuna!

Siamo stati, invece, fortunati con altre supernove e, soprattutto, con la RCF?

Non facciamo confusione: la fortuna o sfortuna nel vedere un’esplosione di brevissima durata non ha niente a che vedere con la RCF e  -se fosse possibile osservarlo- con la visione stessa del Big Bang. Perché questa differenza? Presto detto: “La supernova è avvenuta in un punto e in un momento ben preciso della storia dell’Universo, l’emissione della RCF in un momento abbastanza preciso, ma in TUTTO l’Universo di 380000 anni d’età (così come il Big Bang era TUTTO l’Universo in quel momento)

Potrebbe bastare questa frase per far comprendere l’enorme differenza. Tuttavia, diamone una spiegazione molto semplificata, ma abbastanza esauriente.

Cominciamo con una supernova qualsiasi o, se volete, con un qualsiasi fenomeno di breve durata perfettamente localizzato nello Spazio. Usiamo la solita rappresentazione di cerchi concentrici che simulano l’espansione dell’Universo nel piano del foglio. Attenzione però: in questo modo semplificato, il tempo scorre in modo radiale a partire dal centro (il Big Bang), mentre lo Spazio è rappresentato in una sola dimensione lungo la circonferenza di centro Big Bang e di raggio uguale al tempo trascorso dal momento iniziale.

Consideriamo la Fig. 6 e sull’asse delle ascisse (tempo) mettiamo la nostra Terra.

Figura 1
Figura 6

BB è il Big Bang (tempo = 0). La stella S nasce e l’Universo in quel momento è il cerchio che passa per essa. Noi (T), che scorriamo lungo l’asse del tempo, non esistiamo ancora. La stella S è costretta a muoversi in senso radiale dato che l’Universo si espande. Ad un certo momento la stella esplode come supernova (SN). Noi esistiamo già (intesi come Terra) e siamo abbastanza vicini a lei. A quale distanza? Le distanze si misurano nello spazio e lungo il cerchio che contiene la stella e T. Quindi sarà proprio l’arco di cerchio SN-T (ma ne parleremo più avanti).

Al momento dell’esplosione di S (SN) la luce si dirige alla sua velocità FINITA verso di noi (freccia rossa). Tuttavia, mentre lei cerca di raggiungerci, l’Universo si espande e i fotoni sono obbligati a seguire anch’essi questa espansione. L’espansione costringe un oggetto fermo (come SN) ad andare lungo la retta radiale BB-SN. La luce deve invece seguire sia questa direzione (freccia verde) che quella che la porterebbe verso T.

Notate che, se non ci fosse espansione, la luce arriverebbe a T in breve tempo, dovendo percorrere solo la distanza SN-T. Ma così non è. Quando la stella si sarà trasformata in stella di neutroni N1 e la Terra sarà arrivata in T1 , la luce (ossia i fotoni emessi da SN) sarà giunta solo in L1 (questa posizione è stata costruita sommando “vettorialmente” le frecce rossa e verde - come sommare i vettori è spiegato all'inizio dell'approfondimento sul momento angolare). Se tutto si fermasse, la luce prenderebbe volentieri la direzione verso T1. La distanza è aumentata, ma non di molto. Niente da fare, però, perché l’espansione continua e quando la Terra sarà in T2 la luce sarà giunta in L2.

Attenzione! Stiamo facendo qualcosa che sembrerebbe assurdo, ma che non lo è. Sommiamo la velocità della luce a qualche altra cosa che sembra una velocità... ma, ma... così Einstein si metterebbe a urlare! E, invece no. Niente può superare la velocità della luce nello Spazio, ma non lo Spazio stesso! La sua relatività non pone limiti alla velocità di espansione dello Spazio, e questa può tranquillamente superare anche quella della luce.

Finalmente, OGGI, la luce arriva alla Terra e noi riusciamo a vedere l’esplosione della supernova. Sono passati molti anni da quando la luce è partita, molti di più che se la luce di SN ci avesse raggiunti in T (Universo NON sarebbe stato in espansione, ma statico). Ecco perché diciamo che la SN ha una certa distanza in anni luce -ancora meglio- che la luce ha impiegato un certo numero di anni per raggiungerci. E’ l’unico modo per tenere conto sia della distanza iniziale che del tempo impiegato per raggiungerci.

Comunque sia, in questo caso siamo stati FORTUNATI. Ci siamo trovati al punto giusto, nel momento giusto e con la tecnologia giusta. Pochi anni prima avremmo ancora visto la luce della stella prima dell’esplosione e tra qualche anno solo la stella di neutroni. Nel caso della Supernova del Granchio siamo invece stati SFORTUNATI, perché la luce è arrivata IERI e oggi vediamo ormai solo la stella di neutroni che è rimasta a seguito della catastrofe cosmica. Notiamo, ancora una volta, che la VERA distanza OGGI della stella di neutroni N è l’arco di cerchio Noggi – Toggi.

La Fig. 6 merita qualche altra considerazione. I segmenti colorati in blu, che descrivono rozzamente il percorso compiuto dalla luce al variare del tempo (tenendo conto dell’espansione dell’Universo), dovrebbero essere costruiti per piccoli intervalli di tempo. Ci accorgeremmo allora che la luce descrive una curva un po’ strana che già conosciamo. Essa altro non è che il bordo superiore del CONO DI LUCE odierno del nostro passato, ossia l’insieme di tutto ciò la cui luce ci ha raggiunto OGGI. In altre parole, di tutto ciò che vediamo oggi dell’Universo. Un cono con una forma un po’ strana… ben diverso da quello che siamo abituati a vedere nel diagramma di Minkowski. Beh, l’unica differenza è che stiamo facendo espandere l’universo, mentre la Relatività Ristretta non teneva conto di questo fenomeno.

A questo punto, siamo in grado di passare alla Fig. 7, dove useremo soltanto le curve relative ai coni di luce in tempi diversi, tenendo però conto che la loro costruzione ha seguito la regola di Fig. 6 per descrivere il percorso della luce.

Figura 2
Figura 7

La Fig. 7 mostra diversi coni di luce del nostro passato, in diverse età dell’Universo e quindi in diversi tempi della nostra esistenza. Essi arrivano fino al momento della emissione della RCF. Attenzione però. Il fenomeno è avvenuto in TUTTO l’Universo di allora (cerchio rosso) e non solo in un punto ben definito, come per la stella S di Fig. 6. Il che vuol dire che in qualsiasi momento del nostro passato (e anche del futuro) vi saranno stati o vi saranno sempre dei fotoni appartenenti alla RCF che ci hanno raggiunto o che ci raggiungeranno.

Non fatevi ingannare dal fatto che sembra che solo un punto della RCF ci raggiunga. Nelle figure abbiamo dovuto considerare lo spazio a una dimensione, ma esso è in realtà a tre dimensioni e ciò comporta che ogni curva di luce ci fornisce una visione dell’Universo visibile al momento dell’emissione.

Ciò che cambia nel tempo è solo lo spostamento verso il rosso della luce . Ciò potrebbe comportare che nel futuro diventi invisibile con la tecnologia odierna, ma non per questo la radiazione di fondo smetterà di raggiungerci. Insomma, in questo caso NON SIAMO STATI FORTUNATI, dato che la RCF ci ha raggiunto nel passato, ci raggiunge oggi e ci raggiungerà anche nel futuro.

Per riassumere quanto detto finora e ripetere nel contempo alcuni concetti già trattati, ma mai inutili (penso), abbiamo costruito anche la Fig. 8.

Figura 3
Figura 8

In essa si vede l’intero Universo com’era ieri (una data qualsiasi nel passato), com’è oggi e come sarà domani (un tempo qualsiasi del futuro). Per i tre Universi ho disegnato i coni di luce relativi al nostro passato (curve blu). Come potete facilmente vedere ne esiste uno e uno solo che passa per la supernova SN. Se questo è quello relativa a OGGI, vuol dire che vediamo OGGI la supernova e siamo FORTUNATI.

Invece, si vede benissimo che qualsiasi sia la nostra posizione nel tempo, il cono di luce passa SEMPRE attraverso il cerchio che rappresenta l’Universo al momento della RCF. Di conseguenza essa si vedrà sempre, ossia NON SIAMO FORTUNATI. Stesso discorso varrebbe anche per il Big Bang se solo la sua luce, ossia i suoi fotoni, riuscissero ad attraversare le prime fasi evolutive, quando la densità della materia bloccava inesorabilmente le particelle trasportatrici della luce.

La figura ci mostra anche la differenza tra l’Universo che vediamo oggi (cono di luce blu più spesso) e quello che è invece è l’Universo Osservabile, ossia la distribuzione spaziale odierna di tutto ciò che siamo in grado di vedere oggi (cono di luce). In altre parole: dove si trovano oggi gli oggetti celesti la cui luce ci raggiunge oggi (e che vediamo come erano in passato). Esso deve stare sul cerchio che ci contiene OGGI ed è rappresentato dall’arco di cerchio blu. Come vedete, l’Universo a nostra disposizione è ben poca cosa rispetto all’intero Universo. Oltretutto è un miscuglio di spazio e di tempo e non una sua immagine istantanea.

Questa apparente limitazione è invece una grande FORTUNA (valida sempre), in quanto ci permette di vedere le varie fasi evolutive di un gran numero di oggetti celesti (non tutti, ma sufficienti a capire molto). Anche una "giusta" velocità della luce è fondamentale ai fini della nostra consapevolezza e possibilità di conoscenza dell'Universo: QUI abbiamo parlato di come essa cambierebbe se la luce fosse più veloce o più lenta.

Noterete anche che l’Universo Osservabile cresce di anno in anno, seguendo il ritmo dell’espansione. Molti altri oggetti si renderanno visibili nel futuro, ma una parte di Universo non potrà mai essere osservato. Tutto ciò, indipendentemente dallo spostamento verso il rosso che potrebbe nasconderci per sempre cose già viste, a causa dei limiti tecnologici degli strumenti che potrebbero non essere più in grado di rilevare fotoni che continueranno ad arrivare, ma il cui segnale sarà sempre più debole.

Scusate, se ho ripetuto molte cose già dette, ma penso che non sia mai troppo, quando si parla di questi concetti essenziali. Semplificazioni ne ho fatte, ma non vi sono errori “gravi”.

 

Continua...

QUI le altre puntate  -  QUI l'articolo intero (pubblicato il 10/1/2018)

Lascia un commento

*

:wink: :twisted: :roll: :oops: :mrgreen: :lol: :idea: :evil: :cry: :arrow: :?: :-| :-x :-o :-P :-D :-? :) :( :!: 8-O 8)

 

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.