30/11/20

COSA, COME E QUANDO SI OSSERVA NELL'UNIVERSO (4)

Riproponiamo, diviso in sei puntate, un articolo che deve rappresentare l'ABC per chi volge lo sguardo al cielo: una semplice spiegazione di come funziona quella stupefacente macchina del tempo che l'Universo mette a disposizione di chiunque abbia occhi e testa (e un pizzico di buona volontà!) per comprenderla ed ammirarla. In questa quarta puntata approfondiremo ulteriormente il concetto di Universo Osservabile.

QUI le altre puntate  -  QUI l'articolo intero (pubblicato il 10/1/2018)

 

L'Universo Osservabile  (con espansione)

La prima idea, che potrebbe venire in mente, sarebbe quella di utilizzare la Fig. 9, tracciando però le linee temporali percorse dalle stelle inclinate tra loro, in modo che col passare del tempo si allontanino le une dalle altre. Esse sarebbero, comunque, le linee di Universo, ossia le linee che percorrono gli oggetti celesti (gli attori) in balia soltanto del tempo che passa e dell’espansione del teatro in cui vivono (l’Universo appunto).  Il nome del nostro Circolo nasce quasi spontaneamente…

Bene, proviamo a disegnare la Fig. 14.

Figura 6
Figura 14

Possiamo mantenere l’asse dello spazio come linea orizzontale? Potremmo anche farlo, ma al momento iniziale esiste solo un punto BB, il Big Bang e parlare di spazio sarebbe del tutto assurdo. Tutto lo spazio esistente è solo quel punto.

Dato che tutto si espande da un punto, mettiamolo pure in centro, dato che al tempo t = 0 esiste solo lui. Pensiamo, in qualche modo, che dentro di lui siano concentrate tutte le particelle che diventeranno poi atomi, stelle e galassie. Il tempo può rimanere l’asse verticale, come in Fig. 9?

Beh… è un po’ difficile, dato che ogni stella si muove in una direzione diversa e un tempo non può favorire una stella piuttosto che un’altra, anche se si tratta della nostra stella. Perché noi sì e le altre stelle no? Inoltre, abbiamo detto che ogni stella si muove solo lungo l’asse del tempo. Ne segue che ogni direzione, ossia ogni linea di Universo può essere considerata come linea del tempo.

Prendiamo una stella S (verde) a un certo tempo tS lungo la sua linea di Universo. Fatto? OK.  Adesso non ci rimane che far partire, da lei, la luce. Sappiamo che deve formare un angolo di 45° con l’asse del tempo, ossia con la linea BB – S.

Accidenti! Ma allora lo spazio non può essere la linea orizzontale, altrimenti l’angolo tra luce e linea dello spazio non sarebbe di 45°. Siamo costretti a disegnare uno spazio particolare anche per ogni stella. Proviamo a farlo, anche se la cosa sembrerebbe un po’ complicata. Comunque sia, essa deve essere la linea rossa che passa per S ed è normale alla linea del tempo. Non dobbiamo però dimenticare che a un certo tempo tS di una certa stella, tutto l’Universo deve essere rappresentato da una sola linea (una dimensione). Il tempo tS  è uguale per tutte le stelle (anche se con direzioni diverse) e tale deve essere anche lo spazio in quel momento, ossia l’Universo al tempo tS.

Il modo per risolvere la questione esiste ed è anche semplice… Ogni linea rossa (spazio relativo a un singola stella) può essere considerata una tangente alla circonferenza che ha come raggio proprio il tempo passato tS , che è uguale per tutte le stelle in un certo istante tS. La circonferenza verde è quindi lo spazio che ci serve. Esso prende il posto dell’asse x della Fig. 9. Uno spazio curvo, ma solo per motivi di rappresentazione grafica.

Una rappresentazione simile può anche essere trasportata nelle due dimensioni dello spazio e invece della circonferenza si può utilizzare una superficie sferica.

Ed ecco perché si utilizza il palloncino che si gonfia…

In ogni punto della circonferenza o della superficie sferica si può tracciare la tangente e disegnare il percorso della luce che parte da quel punto.

La cosa veramente importante da capire è, però, che lo spazio è SOLO e SOLTANTO la circonferenza che in un dato istante passa da tutte le stelle o, nelle due dimensioni, la superficie sferica, che fa la stessa cosa.

Ciò che sta dentro alla circonferenza (o alla superficie del … palloncino) non esiste più e rappresenta il passato delle stelle, della luce e anche il nostro. Ciò che, invece, è al di là della circonferenza-spazio rappresenta il futuro. Esso sarà occupato domani dal nuovo spazio che corrisponde al tempo domani.

Insomma, considerare come spazio TUTTO il palloncino che si gonfia è un errore fondamentale. Esso rappresenta un mix di spazio e tempo. Le stelle, le galassie, i pianeti stanno OGGI tutti su una sola circonferenza, una linea curva, o su una superficie sferica. In realtà, dato che le dimensioni dello spazio sono tre, stanno in uno spazio a tre dimensioni istantaneo, impossibile da disegnare senza tralasciare il tempo che scorre.

Ben diverso è, invece, ciò che potremmo vedere OGGI.

Per comprendere questo punto fondamentale, dobbiamo occuparci del cammino della luce in una figura che vede ogni stella con il suo tempo e con uno spazio circolare, in quel dato istante.

La Fig. 15 dovrebbe essere ampiamente esplicativa anche se estremamente “rozza”.

Figura 7
Figura 15

Seguiamola con attenzione. A sinistra abbiamo il nostro Universo statico, senza espansione. La luce della stella azzurra, partita al tempo t1, raggiunge la stella rossa al tempo t2. Basta, infatti, tracciare un segmento a 45° rispetto agli assi dello spazio e del tempo e ricavare subito l’istante in cui la luce arriva alla stella rossa. Notiamo che la distanza tra le stelle è rimasta immutata. Essa è anche la distanza percorsa dalla luce nel tempo t2 – t1.

Riprendiamo le nostre stelle allo stesso istante t1. Manteniamo verticale la linea di Universo della stella verde (possiamo farlo benissimo). La linea di Universo della stella rossa è, invece, inclinata, dato che l’Universo si espande e le due stelle seguono linee che si allontanano tra loro. Facciamo partire la luce dalla stella verde in t1 (come prima). Essa è diretta a 45° rispetto alla verticale (la tangente alla circonferenza che indica lo spazio che coincide con la linea orizzontale).

Andiamo avanti finché la luce arriva sulla stella rossa. Cosa è successo rispetto a prima? Beh… è immediato vedere che la luce ha impiegato più tempo (t’2  > t2). Accidenti… ma la luce deve andare sempre alla stessa velocità, per cui deve avere percorso uno spazio più lungo. Ma… anche questo è vero! Infatti, d’2 è superiore a d2.

Lo spazio dovrebbe essere misurato lungo l’arco di circonferenza, ma la differenza è minima e possiamo considerare la corda che unisce le due stelle. Ne segue che la distanza tra le due stelle non è più una costante, ma varia col tempo. Quando la luce è partita era d1 = d1’, quando è arrivata è invece d’2 > d2 = d1 = d’1.

Abbiamo un bel problema… qual è la distanza tra le due stelle? La prima o la seconda? Dobbiamo scegliere e, comunque, avremmo sempre una distanza variabile. La luce, poverina, ha dovuto percorrere uno spazio più lungo, una via di mezzo tra d’1 e d’2.

In conclusione: la distanza tra due stelle varia da istante a istante: quella relativa alla partenza della luce NON è uguale a quella relativa all’arrivo della luce. In altre parole: quando la luce è partita le due stelle erano più vicine tra loro rispetto a quando la luce  arriva sulla seconda. La luce ha dovuto fare un percorso più lungo rispetto a quello dell’Universo statico.

Come già detto,  la rappresentazione è un po’ “rozza”…

Quando la luce arriva sulla stella rossa, essa dovrebbe arrivarci formando sempre un angolo di 45° con la linea di Universo della stella rossa. La nostra approssimazione brutale non ne tiene conto. In realtà la luce non compie un percorso spazio-temporale rettilineo, ma curva continuamente in modo da presentarsi alla stella rossa con l’angolo giusto e al tempo giusto (leggermente inferiore a quello disegnato). Per tracciare, quindi, percorsi molto lunghi della luce è necessario fare dei passi molto piccoli, in modo da eliminare al massimo il problema sopra accennato.

La Fig. 16 mostra un sistema per migliorare la costruzione (anche se apparentemente sembra la stessa cosa).

Figura 8
Figura 16

Tra le due stelle si considerano tante linee di Universo “ausiliarie”, tali che la loro distanza sia realmente infinitesima. Noi ne abbiamo considerate solo due per semplicità. Si ripete la costruzione di prima, aggiornando la direzione della luce ad ogni incontro. Ne viene fuori una linea spezzata che per intervalli estremamente piccoli tende a essere una curva continua, com’è in realtà.

Utilizzando questa procedura si può costruire il percorso della luce per periodi di tempo anche molto lunghi. Addirittura come l’età dell’Universo, immaginando la luce partita all’istante del Big Bang. In realtà, sappiamo che la prima luce dell’Universo è stata “lanciata” dopo 380 000 anni, al momento della radiazione cosmica di fondo.

Lo vediamo in Fig. 17 (abbiamo esagerato volontariamente l’intervallo temporale in cui nessuna luce poteva uscire dallo spazio che si espandeva al passare del tempo, che coincide con il cerchio arancione).

Figura 9
Figura 17

La radiazione cosmica di fondo non è veramente la luce di una stella, dato che le stelle dovevano ancora formarsi. E’ tuttavia, qualcosa che si può "vedere", in quanto luce, e noi la indichiamo come stelle per semplicità. Oggi ci sta raggiungendo quella della “stella” verde, dopo il cerchio arancione (di quel periodo non possiamo avere informazioni, almeno per adesso) ed è in assoluto la luce della “cosa “ più antica visibile oggi. La luce della “stella” nera arriverà, invece, solo “domani” (sarà comunque sempre radiazione di fondo).

La luce percorre il suo tracciato curvilineo e arriva finalmente alla Terra all’istante OGGI. La distanza originaria tra la Terra (o quello che c’era prima di lei) e la stella era relativamente piccola al momento dell’invio della luce (bordo del cerchio arancione), ma adesso è diventata veramente gigantesca. Ovviamente, la Terra potrebbe anche essere nata molto dopo la partenza della luce dalla stella, ma poco importa. Ciò che conta è che oggi la riesca a ricevere. Se la stella-radiazione di fondo rappresenta la cosa più distante tra quelle che teoricamente potremmo ricevere OGGI, definiamo come Universo Osservabile (anzi ½ Universo Osservabile) la distanza tra la stella OGGI e la Terra OGGI, come fatto nel caso dell’Universo statico.

Risulta subito evidente la spiegazione di ciò che mette in agitazione molti curiosi, poco preparati. Essi dicono: “Ma come è possibile che possa esistere una stella la cui distanza in anni luce sia maggiore dell’età dell’Universo?”. Bene la figura lo dimostra senza creare alcun problema…

L’espansione dell’Universo ha trascinato la stella a una distanza da noi (misurata nello spazio di oggi) che può essere di gran lunga maggiore di quanto la luce riesca a percorrere in 13.7 miliardi di anni, senza subire l’espansione dell’Universo. Oggi l’Universo Osservabile si aggira intorno ai 90 miliardi di anni luce (in diametro), ma molto dipende dal modello cosmologico usato.

Come al solito, DOMANI l’Universo Osservabile si ingrandirà, dato che ci raggiungerà anche la luce della stella nera. Quello di ieri era invece più piccolo. Analogamente a quanto fatto nella Fig. 10, possiamo disegnare la Fig. 18, dove si vede come era l’Universo Osservabile nel passato.

Figura 10
Figura 18

In particolare, vediamo quello relativo al tempo in cui la luce della stella rossa ne segnava il limite (curva rossa) e, ancora più piccolo, quello relativo al tempo in cui era la stella blu a segnarne il limite (curva blu). Ovviamente la luce delle stelle rossa e blu giunge a noi anche oggi, ma essa è partita in tempi molto più recenti.

Come nel caso dell’Universo statico, tutte le stelle la cui luce arriva sulla terra OGGI devono stare sulla curva curvilinea della luce. Ma, ancora una volta, questo succede perché lavoriamo con uno spazio a una dimensione. Se lavorassimo con due dimensioni quella strana curva diventerebbe una specie di cono che si apre e si richiude. Non per niente esso rappresenta il Cono di Luce passato della Terra, ossia quello che contiene tutto ciò la cui luce ha raggiunto la Terra fino a OGGI.

In teoria, potremmo anche disegnare il cono di luce fino a farlo arrivare al Big Bang, ma la costruzione sarebbe piuttosto confusa. D’altra parte dalla zona rosa non può essere uscita alcuna luce.

Sicuramente, però, tutti i coni di luce devono e possono arrivare teoricamente fino al Big Bang, dato che tutto ciò che esiste è nato lì. In qualsiasi istante dell’esistenza passata della Terra sarebbe giunta la sua luce. Se la potessimo vedere, essa sarebbe, quindi, ovunque, in qualsiasi direzione guardassimo, dato che al tempo t = 0 esisteva solo lui e rappresentava tutto l’Universo. Il nostro palloncino doveva ancora gonfiarsi...

Ma non complichiamoci le cose. Abbiamo già in mano molte chiavi per aprire il teatro dell’Universo.

Altre figure, decisamente meno immediate, potrebbero mantenere l'asse dello spazio rettilineo o cose del genere, ma dovrebbero essere introdotte coordinate particolari che , al momento, è meglio tralasciare.

Concludiamo, pensando alla fantastica luce e al suo percorso ben più lungo di quanto si potesse pensare. In qualche modo è come se lei cercasse di venirci incontro nel modo più rapido, ma lo spazio davanti a lei aumenta continuamente ed è costretta a navigare, trascinata in senso opposto dall’espansione.

Oltretutto, l’espansione può anche dare luogo a stelle dell’Universo Osservabile odierno, che si allontanino da noi più velocemente della luce (perché, come abbiamo già spiegato, la velocità di espansione dell'Universo può superare quella della luce) e quindi essa, invece di venire verso di noi, anche se con grande fatica (pensiamo, per esempio, a quel piccolo fotone che ha compiuto un viaggio di 7,5 miliardi di anni e ce lo ha raccontato), verrebbe rimandata indietro e allontanata. Il fotone cercherebbe di raggiungerci, ma sarebbe trascinato lontano dall’espansione. Poverino… è come se salisse di un metro, ma ne scendesse due!

In qualche modo, vi è anche un limite che nega alla luce delle stelle del nostro Universo osservabile di raggiungerci. Una specie di orizzonte degli eventi, come quello dei buchi neri… Nessuna informazione potrebbe essere scambiata con chi sta fuori da questa… siepe. Sì, un’altra siepe ancora, che ci nega di conoscere l’intero Universo, e ci costringe nel nostro “piccolo” Universo di … provincia.

Attenzione! Ripetiamo ancora di NON confondere Universo Osservabile con Universo Osservato. L’Universo Osservabile  corrisponde alla posizione attuale di tutto ciò la cui luce ci raggiunge oggi. L’Universo Osservabile è del tutto estraneo alle nostre capacità: la cosa più lontana la cui luce ci ha raggiunto è indipendente da ciò che noi riusciamo a vedere.

L’Universo Osservato sarebbe teoricamente la stessa cosa, ma il numero dei suoi oggetti celesti dipende da come noi siamo capaci a rilevare la loro luce. La luce di molti oggetti che arriva da noi oggi è troppo debole per essere realmente "osservata" e gli oggetti restano del tutto sconosciuti a causa dei limiti tecnologici degli strumenti a disposizione.  Possiamo, però, dire che l’uomo è riuscito a osservare direttamente il limite dell’Universo Osservabile, dato che riesce a leggere la radiazione cosmica di fondo, la prima luce della cosa più distante osservabile oggi.

A questo punto appare già chiaro che il tempo che la luce impiega a viaggiare da un corpo celeste ad un altro non può essere assunto come misura della distanza tra i due corpi. Riteniamo, tuttavia, utile approfondire la trattazione di questo punto, data la sua importanza.

 

Continua...

QUI le altre puntate  -  QUI l'articolo intero (pubblicato il 10/1/2018)

2 commenti

  1. Fiorentino Bevilacqua

    Mi viene in mente soltanto un termine: sublime. Riferito sia all'argomento che alla chiarissima e lineare spiegazione. Grazie.

Lascia un commento

*

:wink: :twisted: :roll: :oops: :mrgreen: :lol: :idea: :evil: :cry: :arrow: :?: :-| :-x :-o :-P :-D :-? :) :( :!: 8-O 8)

 

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.