Attraverso tanti calcoli analitici (di media difficoltà, anche se un po' noiosi) si possono ricavare le tre leggi di Keplero partendo dalla legge di gravitazione universale di Newton. Vi è un solo punto critico relativo alla derivazione della traiettoria del corpo orbitante: un'equazione differenziale che comporta il calcolo di un integrale non banale (per noi almeno). Solo in questo caso accettiamo di prendere un risultato per buono... Per dirla in altre parole, risolviamo un problema fondamentale di Meccanica Celeste: il problema dei due corpi.
Il teorema di Bernstein risulta necessario per affinare il confronto fra i numeri Cardinali, ed è uno dei teoremi più importanti della teoria degli insiemi.La dimostrazione è complessa ma non estremamente difficile, Vedremo come il concetto di ricorsione, già applicato in altri contesti, occupi una parte dominante nella dimostrazione.
Proseguiamo il nostro percorso nella geometria dello spazio con la seconda parte dell'articolo. La numerazione delle figure e delle formule segue quella della prima parte dell'articolo, che trovate QUI. Fasci di rette nel piano e fasci di piani nello spazio Nel piano le rette posso essere tra loro incidenti, quando hanno un punto in […]
La volta scorsa i papallini in visita al Pianeta dei Numeri si erano imbattuti in un gioco, o meglio un'operazione (come la chiamano i Numeri), apparentemente non risolvibile, ma è davvero così?
I numeri di Fibonacci restano ancora un meraviglioso mistero. E’ indubbio, però, che la Natura sembra conoscerli molto bene. E forse molto di più di quanto immaginiamo.
In questo articolo dimostreremo che R non è un insieme numerabile. La dimostrazione sarà quasi immediata servendoci dei risultati dell'articolo precedente, sulle conseguenze della continuità di R. Per giustificare il fatto che ogni intervallo di R è equipotente ad un suo intervallo, ho dovuto rifarmi a importanti teoremi di analisi matematica, di cui però ho dato la dimostrazione in appendice.
Definiti i lati di un triangolo sferico, non ci resta che definire quali siano i suoi angoli. Nel fare questo, risolviamo il vecchio quiz e stabiliamo anche un’altra proprietà molto interessante dei triangoli sferici. Concludiamo con due nuovi quiz, che saranno risolti la volta successiva.
Obiettivo di questo articolo, di cui viene pubblicata ora la prima parte, è quello di entrare nell'affascinante mondo della geometria dello spazio e, dopo la seconda parte, dimostrare che la curva congiungente due punti situati su una superficie sferica e che misuri la minore distanza tra essi è un arco di circonferenza massima, ossia avente centro coincidente con quello della sfera.
Certamente SI risponderebbero i papalliani in coro, niente numeri niente giochi!
Tutto diventa più semplice utilizzando una visione estrinseca. Tuttavia, aver lavorato solo su uno spazio a due dimensioni non euclideo (a parte le figure) ci ha sicuramente fatto entrare meglio nella problematica. Trovate molte ripetizioni, ma non picchiatemi... Certi concetti vanno digeriti molto bene!
Siamo quasi pronti per dimostrare la non numerabilità dell'insieme dei numeri reali. Purtroppo senza alcune proprietà della continuità di R, non è possibile darne un dimostrazione convincente. Di solito si fa in quattro righe sfruttando la notazione decimale dei numeri reali e il secondo metodo diagonale di Cantor; a parte il fatto che la notazione decimale comporta alcuni problemi di non univocità , essa non è una delle cose più semplici da capire a fondo e inoltre deriva sempre dalle costruzioni di Dedekind e quindi dall'assioma di continuità
Cosa vorrà mai fare PapalAtleta con quella grossa calamita?
Iniziamo la nostra vita su una superficie sferica, obbligandoci a ragionare e a definire la geometria su di essa senza sfruttare la nostra capacità di osservare nelle tre dimensioni. Un impegno non sempre immediato, ma che deve essere affrontato per capire perfettamente una geometria non euclidea, la geometria che governa la sfera celeste (e anche la superficie terrestre), ma non solo. Ripeteremo, poi, gli stessi concetti usando una visione estrinseca, decisamente più comoda, ma i due metodi usati per giungere alla stessa meta daranno un quadro veramente completo della situazione
Cercare di analizzare la cardinalità di R senza prima parlare della continuità che lo caratterizza è assurdo; le dimostrazioni infatti si appoggiano appunto sulla continuità dei numeri reali. E' per questo che l'ordine di infinito di R è diverso (come vedremo) da quello degli insiemi numerabili: a causa della continuità. Lo stesso Cantor per primo, fece una costruzione dei numeri reali per raggiungere lo scopo, noi considereremo però la costruzione di Dedekind.
Questo articolo vuole essere l’introduzione alla geometria sferica, che ci permetterà di descrivere il cielo stellato e le coordinate celesti. Tuttavia, è anche il primo passo verso uno spazio e addirittura uno spaziotempo curvo, base fondamentale per affrontare la Relatività Generale. Non perdetevi, perciò, le varie puntate…
Questo è soltanto un gioco (se volete… chiamatelo pure un quiz) che serve come porta d’ingresso per il nuovo teatro astronomico che andremo a scoprire tra poco.