Rieccoci qui con l'ultima parte dell'appendice all'articolo 8° sulla geometria solida, dedicato al toro. Nella prima appendice abbiamo fatto la conoscenza delle circonferenze di Villarceau. In questa seconda appendice illustrerò altre interessanti curve ottenibili andando a sezionare il toro con un particolare piano. Ci serviremo, come sempre in geometria analitica dello spazio, del linguaggio della matematica. Ma niente paura, useremo strumenti semplici. E, in ogni caso, se avete dubbi, non avete che da chiedere nei commenti.
L'ultima volta avevo concluso l'articolo accennando alle sezioni spiriche, che sono proprio quelle di cui ci occupiamo questa volta. Intanto, perché si chiamano spiriche ?
In questa appendice all'articolo sul toro analizzeremo le curve risultanti dalla sezione del toro con determinati piani secanti. Scopriremo le bellissime circonferenze di Villarceau, l'ippopede di Proclo , gli ovali di Cassini, le lemniscate di Booth e di Bernoulli. Vedremo come la geometria solida sa regalarci momenti di autentica meraviglia. L'appendice è divisa in due parti. La prima è dedicata alle sole circonferenze di Villarceu.