Appartenente alle'insieme delle curve che Hilbert definì "mostruose", la funzione di Cantor-Vitali merita davvero il nome di "scalinata del diavolo". E' l'esempio di una curva debolmente crescente che ha derivata nulla in quasi tutti punti (chiariremo il significato di quel "quasi " più avanti). La curva cresce dal valore 0 al valore 1 senza però essere mai strettamente crescente. Nonostante questo non ha "salti" essendo una funzione continua. Inoltre trasforma un insieme di misura nulla in un intervallo! ma procediamo con calma..
