Iniziamo un discorso estremamente importante: partendo dalla legge di Newton vogliamo arrivare alle leggi di Keplero. Può sembrare strano, ma è un argomento trattato raramente, anche se è veramente fondamentale, riferendosi al moto di due corpi. In questo primo articolo ricordiamo le coordinate polari, descriviamo un’ellisse e introduciamo un nuovo tipo di equazione, in modo estremamente semplificato.
Dimostrato che nella relatività ristretta è necessario modificare la definizione della quantità di moto, affinché essa si conservi, imponendo che la massa del corpo in oggetto aumenti con la sua velocità, risulta chiaro che le leggi di Newton devono subire anch’esse delle modifiche strutturali, quando le velocità diventano paragonabili a quelle della luce. Cominciamo ad avvicinarci all'energia...
Questo articolo risponde al quiz sul buco della Terra. Ma, in realtà, va ben oltre e ci insegna a valutare sempre meglio la semplice genialità di Newton oltre che darci uno spunto per capire, ancora una volta, cosa s’intende per curvatura spaziotemporale. Questo è il bello della fisica: ogni argomento riesce a collegarsi strettamente a un altro e poco importa se siamo vicini alla Terra o in prossimità di un buco nero. Devo complimentarmi con alcuni di voi (non faccio nomi) che hanno quasi completamente risolto il problema e che, quando ci si sono avvicinati soltanto, hanno mostrato di aver compreso appieno il concetto di fondo su cui lavorare. Le leggi della fisica e la loro eleganza e generalità si imparano un po’ alla volta. Siamo tutti studenti che cerchiamo di aggiungere continuamente un mattoncino alla nostra costruzione, che, se ha le basi solide, non rischierà più di cadere.
Questo è un breve articolo a sé stante che, però, mette in evidenza un problema normalmente sottovalutato o -addirittura- dimenticato, che ha un’importanza enorme nel comprendere la differenza tra meccanica newtoniana e relatività generale. Vale la pena richiamarlo, dato che i buchi neri stanno “strapazzando” il nostro povero spazio-tempo.
Ci avviciniamo sempre più alla decodificazione del messaggio luminoso inviatoci dalle stelle. Prima però bisogna comprendere molto bene cosa rappresenti veramente la luce e come possa essere trasmessa. Non si può fare a meno di introdurre la meccanica quantistica, anche se solo sfiorandola. Ovviamente, per i lettori di questo blog, essa è ormai una vecchia e cara amica, anche se un po’ … bizzarra.
Abbiamo descritto il moto circolare uniforme e l’abbiamo applicato a un corpo che, provenendo “da fuori”, è caduto nella ragnatela del corpo di massa M. Ci siamo, però, accorti che, anche se teoricamente possibile, la condizione di stallo dinamico è un caso veramente fortunato. Molto meglio è cercare di ottenere la stessa configurazione lavorando “da dentro”. In altre parole, cercare di lanciare una pietra P di massa m verso l’alto e tentare di metterla in orbita.